
What’s in a
name(Nick)

Examining a previously unknown
iMessage vulnerability with possible

exploitation in the US and EU

What’s in a (Nick)name

Overview 4

The Vulnerability Explained 4

Evidence of Exploitation 5

Recommendations 6

iVerify’s Discovery Process

Detection Capabilities and Methodology 8

Initial Discovery 8

Investigative Process 8

Unique Detection Advantages 9

An Overview of the NICKNAME Vulnerability

The Nickname Update Feature 11

The Vulnerability in Context 11

Technical Understanding 12

Exploit Potential 12

Technical Analysis

Crash Log Review 15

What’s in a Nickname Update? 25

How Did a Nickname Update Trigger the Crash? 27

Diffing Out a Path Forward 30

Characterizing the Imagent Crashes 33

Forensic Investigation 34

Discussion & Analytical Assertions 37

Scope & Incidence 39

References 40

Contents

Overview

iVerify discovered a previously unknown iOS vulnerability called "NICKNAME" affecting
iMessage's handling of contact profile updates. This vulnerability was observed in iOS
versions up to 18.1.1 and fixed in iOS 18.3. The bug involves a race condition in how iOS
processes "Nickname Updates," the feature that allows users to share personalized contact
information with their iMessage contacts. 

Our investigation found evidence suggesting this vulnerability may have been remotely
exploited in the United States and European Union. We identified exceedingly rare crash logs
that appeared exclusively on devices belonging to high-risk individuals including government
officials, political campaign staff, journalists, and tech executives. At least one affected
European Union government official received an Apple Threat Notification approximately
thirty days after we observed this crash on their device, and forensic examination of at least
one other device revealed signs of successful exploitation.

The Vulnerability Explained

The NICKNAME vulnerability exists in "imagent," a core process that handles iMessage traffic.
When users update their contact profile (nickname, photo, or wallpaper), this triggers a
"Nickname Update" that gets processed by the recipient's device. 

The technical issue involves how the imagent process handles data associated with these
updates. Before the fix, when imagent needed to broadcast a Nickname Update to different
parts of the system, it used a mutable data container (NSMutableDictionary) that could be
changed while being accessed by other processes. This created a classic race condition: one
thread might be reading the Nickname Update details while another thread simultaneously
modifies the same data container. This corruption can trigger a memory safety bug known as
a Use-After-Free (UAF), causing the imagent process to crash. 

This vulnerability is particularly concerning because it has zero-click potential, meaning it
could potentially be triggered without any user interaction. Simply receiving specially crafted
messages could potentially lead to exploitation. Since Nickname Updates can be processed
even from unknown senders, an attacker would only need the target's phone number or
Apple ID to attempt an exploit.

What is a (Nick)name?

iVerify Inc. Page 4

Evidence of Exploitation

Between April 2024 and January 2025, we analyzed crash data from nearly 50,000
devices and found that the imagent crashes related to Nickname Updates are
exceedingly rare, comprising less than 0.001% of all crash logs collected. What makes
these crashes suspicious isn't just their rarity, but their exclusive appearance on
devices belonging to individuals likely to be targeted by sophisticated threat actors. 

The affected devices belonged to individuals affiliated with political campaigns, media
organizations, tech companies, and governments in the EU and US. Some individuals
reported additional suspicious activity, including physical surveillance. Most notably,
these crashes were observed on at least one device belonging to a senior European
Union government official approximately thirty days before they received an Apple
Threat Notification. 

Forensic examination of at least one additional device provided evidence suggesting
exploitation: several directories related to SMS attachments and message metadata
were modified and then emptied just 20 seconds after the imagent crash occurred.
This pattern of deleting potential evidence mirrors techniques observed in confirmed
spyware attacks, where attackers "clean up" after themselves, although there are
benign explanations for this specific behavior, too. Similar cleanup activity was noted
again about 80 days later on the same device following an urgent submission
indicating a crash to Apple. 

Finally, the imagent process itself is a core iOS process that has been heavily fortified
owing to its role in previous successful exploitation attempts.  

While no smoking gun definitively proving exploitation exists, when taken together,
this body of evidence gives us moderate confidence these crashes indicate targeted
exploitation attempts. Further, it is possible that the NICKNAME vulnerability served as
one component in a larger exploit chain, providing attackers with a memory
corruption primitive that could be leveraged to compromise iOS devices. 

A thorough description of our methodology and findings is provided in the technical
analysis. 

What is a (Nick)name?

iVerify Inc. Page 5

Recommendations

We recommend all users update to the latest version of iOS. Users in high-risk
categories (government officials, journalists, activists, etc.) should be particularly
vigilant about keeping their devices updated and consider enabling Apple's Lockdown
Mode for additional protection against sophisticated attacks.

What is a (Nick)name?

iVerify Inc. Page 6

S E C T I O N 2

iVerify’s
Discovery
Process

Detection Capabilities and Methodology

iVerify's security platform includes a sophisticated telemetry analysis engine that collects
and analyzes crash logs, diagnostic data, and raw kernel-level artifacts from iOS devices. This
broad deployment across diverse organizations provides a statistically significant sample for
identifying anomalous patterns that might indicate security threats.

Initial Discovery

In late 2024, iVerify's anomaly detection systems flagged a series of unusual "imagent"
process crashes occurring on devices belonging to individuals affiliated with political
campaigns, media organizations, technology companies, and government officials. These
crashes exhibited patterns consistent with sophisticated zero-click attacks typically
associated with commercial spyware operations.

Key indicators that prompted further investigation include�

� The extreme rarity of these specific crash patterns (<0.001% of all crash logs�
� Their exclusive appearance on devices belonging to high-value target�
� Distinctive crash signatures showing memory corruption in the "imagent" proces�
� Similarity to crash patterns seen in known spyware attacks

Investigative Process

Our process included the following components:

1. Telemetry Analysis: iVerify first performed statistical analysis on our telemetry data to
confirm the uniqueness of these crash patterns and the correlation with specific iOS versions
(17.2.1-18.1.1).

2. Crash Log Investigation: Security researchers symbolicated the crash logs to identify the
specific methods and functions involved, revealing the connection to iMessage's Nickname
Updates feature.

iVerify’s Discovery Process

iVerify Inc. Page 8

3. Vulnerability Identification: Technical teams reverse-engineered the relevant code paths
using tools like IDA Pro and the ipsw framework, identifying a thread-safety issue in how
mutable dictionaries were handled by the IMDNicknameController class.

4. Test Environment Validation: iVerify constructed a test environment with controlled iOS
devices to replicate the data flow of Nickname Updates and understand the vulnerability in a
controlled setting, revealing the difficulty associated with triggering this vulnerability under
organic circumstances.

5. Patch Analysis: Researchers performed differential analysis between iOS versions to
identify the fix implemented in iOS 18.3, confirming the nature of the vulnerability.

6. Forensic Examination: For at least one affected device, iVerify conducted in-depth forensic
analysis using Sysdiagnose data and encrypted backups, revealing suspicious filesystem
modifications occurring immediately after crashes—activity consistent with known spyware
cleanup procedures.

Unique Detection Advantages

Several key factors enabled iVerify to identify this zero-click attack�

� The scale and depth of our telemetry collection across both high-risk users and the
general population�

� Deep technical expertise in iOS internals and experience with previous iOS exploitation
techniques and their forensic marker�

� Our ability to perform longitudinal analysis across iOS versions and device populations

This investigation exemplifies how telemetry-based anomaly detection, combined with deep
technical analysis, can uncover sophisticated zero-click vulnerabilities that would otherwise
remain invisible to conventional security monitoring.

iVerify’s Discovery Process

iVerify Inc. Page 9

S E C T I O N 3

An Overview of
the NICKNAME

Vulnerability

The Nickname Update Feature

The vulnerability impacts iOS "Share Name and Photo" feature in iMessage, which allows
users to personalize how they appear in their contacts' Messages app. Introduced as part of
Apple's efforts to enhance iMessage personalization, this feature enables users to�

� Set a custom display name for themselve�
� Share a profile photo or Memoj�
� Include a custom background/wallpaper for their contact car�
� Control sharing settings (with "Always Ask" or "Contacts Only" options)

When enabled, iOS presents a prompt asking if the user wants to share their name and photo
when messaging someone new. If approved, the recipient receives a "Nickname Update"
containing this personalization data.

From a user perspective, this creates a more personalized messaging experience. However,
from a security perspective, it introduces a new complex data processing pipeline that
accepts and handles content from external sources—a potential target for attackers.

The Vulnerability in Context

The "NICKNAME" vulnerability (patched in iOS 18.3) is significant because it affects iMessage
—a system Apple has heavily fortified in recent years. Apple implemented BlastDoor in iOS 14
as a sandboxed service designed to process untrusted data before it reaches the core
messaging system. Despite these protections, sophisticated attacks like FORCEDENTRY and
BLASTPASS subsequently emerged, specifically engineered to bypass BlastDoor's security
boundaries. Assuming our conclusions about attempted exploitation are correct, NICKNAME
continues this trend, demonstrating that determined attackers continue to find narrow
vectors through Apple's defenses.

An Overview of the NICKNAME Vulnerability

iVerify Inc. Page 11

Technical Understanding

At its core, NICKNAME is a thread-safety vulnerability in iOS's "imagent" process—the Instant
Messaging Agent responsible for handling iMessage traffic. The vulnerability specifically
impacts the processing of contact "Nickname Updates," a feature allowing users to share
their name, avatar, and wallpaper with contacts.

The bug manifests as a Use-After-Free (UAF) condition in the IMDNicknameController class.
When a device receives nickname updates, the following occurs�

�� The imagent process decrypts and unpacks the message (represented as an
NSDictionary)�

�� The message is sent to IMTransferAgent to retrieve nickname data from iCloud�
�� Data passes through BlastDoor for sanitization�
�� The resulting data is transformed into an IMNickname object�
�� Several methods process this object, ultimately calling

_broadcastNicknamesMapChanged.

The vulnerability arises because IMDNicknameController uses mutable dictionaries
(pendingNicknameUpdates, handledNicknames, and archivedNicknames) that can be
accessed concurrently by multiple threads. When nickname updates are processed rapidly�

� Thread A begins serializing a dictionary for an XPC messag�
� Thread B modifies the same dictionar�
� Thread A attempts to access now-corrupted memory, triggering a crash

The crash logs consistently show failures in objc_retain() while attempting to access invalid
memory addresses—a telltale sign of memory corruption.

Exploit Potential

While a crash alone isn't an exploit, sophisticated attackers could potentially do the following�

�� Send specially crafted nickname updates in rapid successio�
�� Trigger the race condition at a precise moment

iVerify Inc. Page 12

An Overview of the NICKNAME Vulnerability

�� Corrupt memory in a controlled manne�
�� Use the corrupted memory as a primitive for code execution

What makes this vulnerability particularly concerning is that�

� It requires no user interaction (zero-click�
� It’s potential to bypass BlastDoor sandboxing�
� A body of evidence suggests this vulnerability was exploited in the wild

Apple's patch in iOS 18.3 addressed this vulnerability by using immutable copies of
dictionaries when broadcasting nickname updates, effectively preventing the race condition
that enabled the exploitation.

This vulnerability highlights the ongoing arms race between Apple's security enhancements
and determined attackers finding narrow windows of opportunity in complex messaging
systems.

iVerify Inc. Page 13

An Overview of the NICKNAME Vulnerability

S E C T I O N 4

Technical
Analysis

Crash Log Review

A body of insightful research elaborates on the historic targeting of the iMessage remote
attack surface. Building upon the knowledge of others, iVerify recognizes that this Apple
service - among others, to include third-party encrypted messaging applications - as a
priority target for commercial spyware vendors (CSVs) and nation-state adversaries with
spyware capabilities. This general understanding of adversarial TTPs underpins our analysis.
We start with a review of the `imagent` crash logs themselves, understanding that each one
is similar in nature, differentiated only by iOS version and, in some other cases, a different
“Exception Type.”

‘Imagent’ (or the Instant Messaging Agent) is a core process uniquely responsible for
handling traffic from iMessage. Its remote attack surface is frequently targeted and, in the
context of zero-click exploitation, enables malicious actors to compromise victims by using
their phone number and/or Apple ID. Payloads exploiting components of the larger iMessage
process flow, even with improved security mechanisms from other services such as
BlastDoor, have the potential to crash the ‘imagent’ process. Documented analysis of
FORCEDENTRY, BLASTPASS, and Operation Triangulation make for great case studies and
background reading.

With this context in mind, the iVerify team focused our analysis on the ‘imagent’ crash logs
which were present in our telemetry collection. iVerify was interested in this crash log
because of its ‘Exception Type’ field which indicated the ‘imagent’ incorrectly attempted to
access a misaligned or invalid address in memory, or failed pointer authentication. Closer
inspection of the ‘Exception Subtype’ field highlighted KERN_PROTECTION_FAILURE at a
specific address.

Technical Analysis

iVerify Inc. Page 15

Figure 1: imagent crash log header, device with iOS version 17.7

The backtrace for thread 3 terminated in the ‘objc_retain()’ stack frame, part of ‘libobjc.A.dylib’.

Figure 2: instructions before the crash, device with iOS version 17.7 objc_retain

The thread crashes on the fourth instruction of the ‘objc_retain()’ function. ‘x0’ holds the pointer to
the passed `NSDictionary` object to `objc_retain()`. The value at the address of the object is loaded
into `x16` which should be the ISA pointer. The next instruction clears the last 3 bits and the upper
bits of the pointer. The final instruction loads the value at offset `0x20` of the pointer into register
`x17`. This is where our code crashes because the address found in `x17` at offset 20 is not valid.

We can validate this by looking at the value and the crash message:

```


  x16: 0xa31afb5650572383


  x17: 0x0000000650572380



Exception Type:      EXC_BAD_ACCESS (SIGBUS)


Exception Subtype:   KERN_PROTECTION_FAILURE at 0x00000006505723a0


```

iVerify Inc. Page 16

Technical Analysis

We can see that `x17` is the result of `x16 & 0xFFFFFFFF8`.

Also, `0x0000000650572380 + 0x20 = 0x00000006505723a0`; this value matches the memory
address the operating system attempted to resolve when it crashed. When the OS attempted to
access the memory at this address, it was unmapped, leading to the crash.

Prior to termination, `IMDaemonCore` likely prepared an object and leveraged `NSInvocation` to pass
this object over XPC. This backtrace reveals that the object was an `NSDictionary`, serialized, and
ultimately encoded prior to the crash.

This supports our working theory, that the crash was triggered in this particular frame because the
pointer - which should resolve to a part of the `NSDictionary` object in memory with a valid reference
count as part of the Objective-C runtime - was corrupted or had already been deallocated after a
precursory call to `objc_release()`, indicative of a Use-After-Free (UAF) bug.  

But the questions that remain here are what sort of `NSDictionary` was sent by `imagent`, which
service should receive that `NSDictionary`, and how was it corrupted in the first place?

Figure 3: unsymbolicated imagent crash log (thread 3), device with iOS version 17.7

A more thorough review of the main thread is helpful, but does not highlight a possible root cause
because this crash log remains only partly symbolicated.

iVerify Inc. Page 17

Technical Analysis

Figure 4: unsymbolicated imagent crash log (thread 0), device with iOS version 17.7

Crash log symbolication is a crucial first step in identifying the code path which led to the crash,
enabling researchers to trace the issue back to functions, methods, relevant frameworks, or even
specific ARM64 instructions which received execution. We wanted to dive deeper into the
`IMDaemonCore` framework. `ipsw` - the “Swiss Army Knife” of iOS/macOS research - positioned us to
understand the `IMDaemonCore` code paths by enumerating memory addresses which point to
relevant runtime methods. In this example, we’ll briefly step away from our “iOS version 17.7” device to
walk through the symbolication of a similar crash log generated on iOS version 17.6.1.

Figure 5: using `ipsw` to symbolicate a target crash log

iVerify Inc. Page 18

Technical Analysis

The `ipsw` command will generate output similar to the following:

Figure 6: example of symbolicated crash without unslid addresses and relevant symbols; similar to other `imagent` crashes,

iOS version 17.6.1

But we have a problem: we can’t resolve these specific memory addresses to the `IMDaemonCore`
methods because they are “slid” by the presence of ASLR (Address Space Layout Randomization), and
the symbols themselves are missing.
 

We can address the first issue by “unsliding” the memory addresses. If we look at the line that starts
with `Shared Cache:` in the `ipsw` output, we can see that it shows the base address of the dyld
shared cache (DSC). In this example (featured in figure 4), the address is `0x18f64c000`. By default,
the DSC has a base address of `0x180000000`. When the DSC is loaded into memory, it is loaded at a
random offset of `0x180000000`. This random offset is the ASLR slide. So for the example above, the
slide is `0xf64c000`.

We can write a Python script to compute the ASLR slide from the DSC base address and then use a
regular expression to match on the backtrace lines, extract the addresses, and re-write them with
their “unslid” values.

There is one caveat to this - the executable images that are not part of the DSC will receive their own
ASLR slide, so the DSC slide will not work for those images. The primary example of this will be the
main executable image of the running process, `imagent`. Let’s briefly look at the `.ips` crash log for
this 17.6.1 device.

iVerify Inc. Page 19

Technical Analysis

Figure 7: the binary image of `imagent` as seen in an unsymbolicated crash log

The `base` value represents the address where the image is loaded in memory at runtime. By
comparing this base address with the static load address of the Mach-O executable (`imagent`), we
can calculate the slide (the random offset applied by ASLR). Once we know the slide, we can adjust
the memory addresses from the crash log by subtracting the slide to "unslide" them. While this
process could be scripted, we particularly care about the modules in the DSC so we can mostly ignore
this calculation.

The other issue is the missing symbols in the backtrace. This can be particularly frustrating because if
you load a dylib like `IMDaemonCore` in IDA, you'll notice many symbols are absent. For example, in
frame 8 above (figure 6), we see the slid address `0x1e5de4b38`, which corresponds to an unslid
address of `0x1d6798b38`.

If we open the DSC in IDA Pro and load IMDaemonCore, we can pinpoint the following function:

Figure 8: function identified after loading IMDaemonCore in IDA; contains the unslid address `0x1d6798b38`

If we look at cross references to this address, we can see that there's a pointer to it in the
`__objc_methlist` section of IMDaemonCore, but no corresponding symbols.

iVerify Inc. Page 20

Technical Analysis

Figure 9: identifying the same memory address as a `xref` in IDA, but with no symbols

This section contains relative pointers to the `libobjc.A.dylib` shared library. To resolve these pointers
to specific methods, go to `File -> Load File -> DYLD Shared Cache Utils -> Load module…` and select
the dylib. This will prompt IDA to refresh the section and load the symbols for the Objective-C
methods.

Figure 10: newly resolved methods after loading relevant dylibs

We can load the various libraries involved in our backtraces of interest. From there, we can write a
simple IDA script to load the backtrace, extract the slid, unslid the addresses, and append the method
names to each line.

And now we have the newly improved, symbolicated backtrace:

Figure 11: example `imagent` crash from iOS version 17.6.1 after resolving unslid memory addresses to relevant Objective-C
methods

iVerify Inc. Page 21

Technical Analysis

The process can be repeated for the `imagent` crashes we have on hand, both for their main threads
and the specific threads responsible for crash conditions.

Figure 12: symbolicated `imagent` crash log (thread 0), device with iOS version 17.7

Figure 13: symbolicated `imagent` crash log (thread 3), device with iOS version 17.7

So far the iVerify team was able to identify numerous crashes impacting various versions of iOS 17.
Here we’ll highlight an additional crash impacting iOS major version 18.

iVerify Inc. Page 22

Technical Analysis

Figure 14: symbolicated imagent crash log (thread 0), device with iOS version 18.1.1

Figure 15: symbolicated imagent crash log (thread 4), device with iOS version 18.1.1

There was another common thread between these anomalous crash logs, most noticeable after
supplementing their contents with symbols: all of the crash logs involved iMessage “Nicknames” and,
more specifically, “Nickname Updates.”

iVerify Inc. Page 23

Technical Analysis

Figure 16: symbolicated crash log indicating the use of IMDNicknameController

And in frame 11, we can clearly identify the peculiar transition from `IMTransferServices`, a service
dedicated to managing the transfer of media and attachments within iMessage on iOS, including
handling uploads and downloads to and from iCloud. This service also coordinates file transfers,
ensures reliability, and manages background operations to continue transfers even when the
iMessage app is inactive.

Figure 17: symbolicated crash log, frame transition from IMTransferAgent

Interestingly, all of these crashes are fundamentally similar in this way - that is, terminating later as a
result of some kind of memory corruption (e.g. UAF) after some form of hand-off from iMessage to the
`IMDaemonCore`. We decided to dive into the Nickname feature and unearth the bug at hand.

iVerify Inc. Page 24

Technical Analysis

What’s in a Nickname Update?

In recent versions of iOS, it is possible for a user to set a nickname, avatar, and wallpaper for
their contact card. It can be shared with other contacts over iMessage. At a high level,
Nickname Updates are sent from `imagent` to `IMTransferAgent` which will download the
associated data from iCloud. Once the download is successful, the content is passed through
BlastDoor. `imagent` will eventually receive this Nickname Update. To adequately understand
the data flow of a Nickname Update and identify how these Nickname Updates might trigger
the crashes, we instrumented the `Share Name and Photo` feature for testing.

Our test bed consisted of an iOS device running iOS version 18.3 and an M1 Macbook Air on
macOS 15.1.1. We disabled System Integrity Protection (SIP) on the Macbook so we could
attach ourselves to and effectively debug system processes related to iMessage. Both
macOS and iOS share much of the same code for iMessage, so there should be minimal
differences between the two. For the reader’s awareness, we will note that the information
below may not be entirely accurate for iOS depending on the version.

We started our tests by enabling the `Share Name and Photo` feature on the iOS device. We
navigated to `Settings > Apps > Messages > Share Name and Photo` and enabled `Name &
Photo Sharing`, shown below:

Figure 18: Name & Photo Sharing feature in Settings

iVerify Inc. Page 25

Technical Analysis

The `Share Automatically` field can be set to either `Always Ask` or `Contacts Only`. If set to `Contacts
Only`, then the Nickname Updates will be sent whenever the user sends a message to a contact. If set
to `Always Ask`, the user will see the following prompt in the Messages app whenever they make
changes to their Name & Photo for iMessage:

Figure 19: An example of the Always Ask prompt

We verified that Nickname Updates are processed by the receiver even if the sender is unknown. In
this circumstance, the sender would have to send an initial message from the Messages app to be
able to send Nickname Updates from the UI, but this likely is not required by iMessage itself which
would make this a potentially suitable attack surface for zero-click attacks.

iVerify Inc. Page 26

Technical Analysis

How Did a Nickname Update Trigger the Crash?

When we sent a Nickname Update, it resulted in the method call:

`-[IMDNicknameController
service:account:incomingTopLevelMessage:fromID:messageContext:]’

This method decrypts and unpacks the message (represented as a dictionary); in a subsequent call
to:

`-[IMDNicknameController
getNicknameWithRecordID:decryptionKey:wallpaperDataTag:wallpaperLowResDataTag:wallpa
perMetadata Tag:isKnownSender:shouldDecodeImageFields:completionBlock:]`

a message is sent to `IMTransferAgent` to retrieve the nickname data and define a block callback after
the download is complete.

Once the data is downloaded from iCloud, the data is passed as a dictionary to
`MessagesBlastDoorService`. In our review of this code path, it looked like the data returned from
Blastdoor varies depending on whether the sender is unknown or known to the receiver. If the sender
is unknown, the image data will not be processed.

The data from BlastDoor is transformed into an `IMNickname` object and is passed to the completion
block for the original download request. The newly transformed `IMNickname` object traverses a
couple of other block callbacks before calling the following methods, in sequence:

`- [IMDNicknameController saveNicknameForRecordID:handleID:userNickname:]`

`- [IMDNicknameController addNicknameToPendingUpdates:]`

`- [IMDNicknameController addNicknameToPendingUpdates:]`

So what happens after the call to `- [IMDNicknameController addNicknameToPendingUpdates:]` ?

iVerify Inc. Page 27

Technical Analysis

There is a method call to the selector

`updatePendingNicknameUpdates:handledNicknames:archivedNicknames:`

but it is difficult to discern what exactly implements that method. In the shared cache, we identified at
least two classes which implement that particular selector:

`IntentsClientBroadcaster`

`_IMLegacyDaemonListener`

In this iteration of the test bed, we failed to hit either of those methods. This is where the differences
between iOS and macOS may have complicated matters. Instead, the object which ultimately
received the message was an `IMInvocationCapturingProxy` which, once again, resulted in a relative
dead end - `xrefs` in IDA pointed to Swift async methods from the `ClientConnectionManager` class
(which can also be found inside of the crash logs), but this bore no fruit.

Ultimately, we were able to instrument Frida on our macOS test device to effectively trace all methods
with the selector:

`updatePendingNicknameUpdates:handledNicknames:archivedNicknames:`

We identified the method:

`- [__NSXPCInterfaceProxy_IMDaemonListenerProtocol
updatePendingNicknameUpdates:handledNicknames:archivedNicknames:]`

After placing a breakpoint on this particular method, we finally generated a familiar backtrace
(reference figure 2, frame 7).

iVerify Inc. Page 28

Technical Analysis

Figure 20: hitting the breakpoint on the macOS and generating a backtrace

We can see that it’s almost identical to the crash log referenced in figure 2 in which the
`_NSXPCDistantObjectSimpleMessageSend3` method is called on frame 7.

Figure 21: a nearly identical backtrace, as seen in our first crash log (iOS 17.7)

Here we can see that `_NSXPCDistantObjectSimpleMessageSend3()` retrieves an object from offset
`0x8` of `x0`; it calls the method `sendSelector:withProxy:arg1:arg2:arg3:` with this object in `x0`. If
we examine this object, we can see that it is an `NSXPCConnection` object:

<NSXPCConnection: 0x63276300> connection from pid 1000 on mach service named

com.apple.imagent.desktop.auth

Here we can see that `_NSXPCDistantObjectSimpleMessageSend3()` retrieves an object from offset
`0x8` of `x0`; it calls the method `sendSelector:withProxy:arg1:arg2:arg3:` with this object in `x0`. If
we examine this object, we can see that it is an `NSXPCConnection` object:

iVerify Inc. Page 29

Technical Analysis

Diffing Out a Path Forward

After successfully identifying a viable code path responsible for directing our newly generated
“Nickname Updates”, we still needed to identify a potential vulnerability that could “trigger” the crash.
We additionally wanted to discern whether that potential vulnerability could already be fixed. The
latest crash derived from our telemetry occurred on iOS 18.1.1, but the current iOS version, at the time
of our analysis, was 18.3.

If we could concretely identify code changes in 18.3 related to Nickname Updates which successfully
address this vulnerability, we might reveal the specific building blocks needed to instrument, trigger,
and reproduce the crash in earlier versions of iOS. If we found no changes to the relevant code paths
in iOS 18.3, there was a chance we could assist Apple in patching this vulnerability.

Our team spent several days analyzing code changes between iOS versions. iOS versions 18.2 and
18.3 specifically changed one method relevant to the Nickname Update call sequence we have so far
analyzed.

The method `-[IMDNicknameController _broadcastNicknamesMapChanged]` is called after various
Nickname operations are completed. The `IMDNicknameController` class has three
`NSMutableDictionary` instance variables: `pendingNicknameUpdates`, `handledNicknames`, and
`archivedNicknames`.

In iOS 18.2, `-[IMDNicknameController _broadcastNicknamesMapChanged]` looks like this:

Figure 22: original implementation of the method, pre-patch

iVerify Inc. Page 30

Technical Analysis

Figure 23: post-patch, with NSDictionary objects being copied into immutable objects

We can see that a call to `-[NSObject copy]` has been added for each of the three
`NSMutableDictionary` variables. The documentation for this method indicates that it “returns the
object from `copyWithZone:`.”

`copyWithZone:` is further described in the following way:

The returned object is implicitly retained by the sender, who is responsible for releasing it.
The copy returned is immutable if the consideration "immutable vs. mutable” applies to
the receiving object; otherwise the exact nature of the copy is determined by the class.

The patch diff revealed the `NSMutableDictionary` instance variables as likely candidates for some
form of memory corruption. At a high level, the original workflow for broadcasting Nickname Updates
in iOS version 18.2 works similar to the following�

� Retrieve a pointer to the underlying data structure (a dictionary)�
� Start a new thread�
� Use the thread to conduct remote procedure calls asynchronously to broadcast Nickname

Updates to all registered listeners.

iVerify Inc. Page 31

Technical Analysis

This is likely what was happening during the crashes when attempting to serialize an `NSDictionary`
for the XPC message: a previous Nickname Update was in the process of being serialized in the
`com.apple.Messages.ClientConnection` thread (explored in the section above) while a new Nickname
Update was being processed on the main thread. Said another way, one thread was responsible for
mutating the dictionary data structure while the other was still operating on its contents, now
malformed or otherwise corrupted in some unexpected way.

With this new insight, and in reviewing both of the crash logs presented within this report, we
explicitly note that both crashed threads (frame 0) ended at `objc_retain()` while serializing an
`NSDictionary` object used as an argument for an `NSXPC` remote invocation. There exists a possible
scenario where multiple Nickname Updates, in rapid succession, mutate the targeted dictionary to
corrupt memory.

The patch diff shows iOS version 18.3 circumventing this issue by leveraging immutable copies of the
underlying data structures. The main thread would continue to make updates to the mutable data
structure as needed, depending on when it received Nickname Updates, while other threads would
operate on copies of the data.
 

iVerify Inc. Page 32

Technical Analysis

Characterizing the Imagent Crashes

We queried our telemetry to describe the significance of these `imagent` crashes and whether they
could be categorized as normal behavior. Table 1 contains metrics which describe the relevant
subsets of data.

Type of “.ips” file Percentage of “.ips” file

“.ips” files related to imagent 0.9%

imagent crashes 0.0042%

Crashes related to Nickname Updates 0.0016%

Crashes indicating Nickname Updates triggered memory corruption 0.0016%

Table 1: description of imagent telemetry data as a % of total “.ips” files collected during the relevant time period (April 2024 -
January 2025)

As seen in Table 1, imagent “.ips” files are generally not a rare occurrence, constituting around 1% of all
the crash-related logs we collected during the relevant time period of April 2024 to January 2025.
The specific crashes related to memory corruption, however, are indeed exceedingly rare – less than
.001%. It is also worth noting that the devices on which we saw memory-corruption related crashes
only belonged to individuals who are significantly more likely to be targeted by foreign threat actors,
all of which described historic, highly credible targeted attacks against their members. At least one
unnamed individual within this table specifically reported observing physical surveillance and
anomalous device behavior. And these same highly anomalous crashes were observed on at least one
device belonging to a senior government official in the European Union approximately thirty days prior
to receiving Apple Threat Notifications.

For these findings to be meaningful, however, iVerify’s internal telemetry database would need to be
sufficiently large and representative of iPhone behavior; otherwise, sample bias becomes a concern.
We can think about capturing diversity across several axes: different iOS versions, device models,
regions, and user behavior patterns. If we conservatively estimate ~10-20 common variants in each
dimension, then getting reasonable coverage would require at least tens of combinations. If we
assume partial overlap and some redundancy, a sample size of only ~1000 unique devices should
suffice to observe repeated patterns across subgroups and generalize internal behaviors with some
confidence. The sample used in this investigation contained closer to 50,000 unique devices, each
collecting crash log data relevant to this investigation. And we have no reason to believe the sample is
overly biased towards high-risk individuals either, as the overwhelming majority of iVerify’s end users
constitute rank-and-file individuals, including consumers and employees at various financial
institutions, technology companies, non-profit organizations, and government agencies around the
world.

iVerify Inc. Page 33

Technical Analysis

Forensic Investigation

The relative rarity of these `imagent` crash files - specifically those triggered by Nickname Updates -
prompted a more comprehensive look at available forensic data. The team wanted to identify data
artifacts highlighting the malicious nature of these crashes, possibly related to exploitation.  

We were able to retrieve a Sysdiagnose and an Encrypted Backup from one of the devices. After
reviewing the data, we specifically identified anomalous modification to several SMS Attachments
directories approximately 20 seconds after the crash. These directories were later revealed to be
empty. This sort of behavior has been observed in the past when threat actors “cleaned up” residual
traces of exploitation [1,4,5]. 

Additionally, we were able to identify two directories related to MessagesMetadata similarly modified
and void of any content. These directories generally contain chat information. In other cases, these
directories contained a “GroupPhotoImage”. The same directory also contained a folder, denoted
simply “NicknameCache”. The “NicknameCache” directory did not contain any data for the date of the
crash.  

On the same device, we noted a second window of time which marked similar activity, once again
occurring after the `imagent` crash was initially observed. For the sake of protecting the identity of
the device owner, we have rebased this second window of time to be 80 days after the `imagent`
crash.

During the second window of time, we noted similar activity; the SMS Attachment directories once
again showed indications of modification, but remained empty. We observed one instance of the
“com.apple.CrashReporter.plist” file containing one urgent submission on day 81 after the `imagent`
crash.

The use of `mvt` enabled us to review additional records contained within `sms.db` that were modified
at day 0, and we found that no existing SMS records were related to the modified directories in
question.

TimeStamp
rebased to
Date of Crash

MVT
Module

Event Details

T+ 00 00:00:00 Manifest M-CB DiagnosticReports/imagent-0000-00-00-000000.ips -
SysSharedContainerDomain-
systemgroup.com.apple.osanalytics

T+ 00 00:00:20 Manifest M-C- Library/SMS/Attachments/7e/14 - MediaDomain

iVerify Inc. Page 34

Technical Analysis

T+ 00 00:00:21 Manifest M-C- Library/MessagesMetaData/0c/12/iMessage;+;chat-A -
HomeDomain

T+ 00 00:00:28 Manifest M-C- Library/SMS/Attachments/80/00 - MediaDomain

T+ 00 00:00:29 Manifest M-C- Library/SMS/Attachments/6d/13 - MediaDomain

T+ 00 00:00:29 Manifest M-C- Library/SMS/Attachments/28/08 - MediaDomain

T+ 00 00:00:29 Manifest M-C- Library/SMS/Attachments/90/00 - MediaDomain

T+ 00 00:00:30 Manifest M-C- Library/SMS/Attachments/c3/03 - MediaDomain

T+ 00 00:00:33 Manifest M-C- Library/SMS/Attachments/c4/04 - MediaDomain

T+ 00 00:00:33 Manifest M-C- Library/SMS/Attachments/a2/02 - MediaDomain

T+ 00 00:00:33 Manifest M-C- Library/SMS/Attachments/e6/06 - MediaDomain

T+ 00 00:00:34 Manifest M-C- Library/SMS/Attachments/a0/00 - MediaDomain

T+ 00 00:00:34 Manifest M-C- Library/SMS/Attachments/2a/10 - MediaDomain

T+ 00 00:00:36 Manifest M-C- Library/SMS/Attachments/7f/15 - MediaDomain

T+ 00 00:00:36 Manifest M-C- Library/SMS/Attachments/29/09 - MediaDomain

T+ 00 00:00:36 Manifest M-C- Library/SMS/Attachments/5c/12 - MediaDomain

T+ 00 00:00:38 Manifest M-C- Library/SMS/Attachments/6e/14 - MediaDomain

T+ 00 00:00:39 Manifest M-C- Library/SMS/Attachments/39/09 - MediaDomain

T+ 00 00:00:39 Manifest M-C- Library/MessagesMetaData/84/04/iMessage;+;chat-B
- HomeDomain

T+ 80 00:00:00 Manifest M-C- Library/SMS/Attachments/ed/13 - MediaDomain

T+ 80 00:00:01 Manifest M-C- Library/SMS/Attachments/c7/07 - MediaDomain

T+ 80 00:00:01 Manifest M-C- Library/SMS/Attachments/0d/13 - MediaDomain

T+ 80 00:00:01 Manifest M-C- Library/SMS/Attachments/87/07 - MediaDomain

T+ 80 00:00:01 Manifest M-C- Library/SMS/Attachments/60/00 - MediaDomain

T+ 80 00:00:01 Manifest M-C- Library/SMS/Attachments/f0/00 - MediaDomain

T+ 80 00:00:01 Manifest M-C- Library/SMS/Attachments/a7/07 - MediaDomain

T+ 81 00:00:00 CrashRe
porter

Urgent Submission Count:
1(com.apple.CrashReporter.plist)

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/eb/11 - MediaDomain

iVerify Inc. Page 35

Technical Analysis

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/cb/11 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/73/03 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/ab/11 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/f9/09 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/9b/11 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/52/02 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/fc/12 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/ca/10 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/96/06 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/ce/14 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/65/05 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/f8/08 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/01/01 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/de/14 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/5a/10 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/50/00 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/18/08 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/ae/14 - MediaDomain

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/b4/04 - MediaDomain

Table 2: summary of modified directories

We were not able to determine with full certainty if these filesystem metadata artifacts were somehow
related to Nickname Updates as facilitated by iMessage. When we attempted to investigate other
databases that could have assisted in the analysis, there were no traces of the modified directories.
This behavior appeared to us to be relatively unique and highly correlated to the specific type of
imagent crash described above, and bears strong similarity to cleanup behavior observed in other
confirmed spyware attacks [1,4,5].

T+ 81 00:00:00 Manifest M-C- Library/SMS/Attachments/cb/11 - MediaDomain

iVerify Inc. Page 36

Technical Analysis

Discussion & Analytical Assertions

iVerify maintains moderate confidence that these crash logs, as described above, could be related to
exploitation attempts against select individuals.

Our analysis reveals various iOS versions crashing as a result of memory corruption and the misuse of
mutable `NSDictionary` objects implemented as part of the Nickname Updates subsystem within
`imagent`. iVerify maintains high confidence that a Nickame Update, transmitted through iMessage at
an irregular frequency, could feasibly mutate Objective-C objects and shape memory into a viable
primitive for additional exploitation against core iOS services. Crashes occurred within a specific
subset of iOS versions, not exceeding iOS version 18.1.1, and these crashes were derived from various
organizations. We identified code changes indicating that the `NSDictionary` objects have effectively
been rendered “immutable” and Nickname Updates now operate on copies of the dictionaries,
successfully addressing this UAF condition.

iVerify further maintains moderate confidence that these crash logs can only be generated in unique
circumstances, e.g. submitting Nickname Updates in rapid succession. This would explain the relative
rarity of such an event, which is part of what initially appeared to us as suspicious. Specific test cases
are still outstanding, to include the instrumentation of select forms of fuzzing, the results of which
would likely boost our confidence. It should be noted that Nickname Updates are not guaranteed to
generate any form of UI notifications, and it is likely that a motivated adversary could instrument and
productize the rapid transmission of iMessage payloads necessary for exploiting this vulnerability. In
our testing, we were successful in transmitting a NicknameUpdate only after a sender and recipient
had previously been in contact; how this security mechanism may be bypassed is worth researching.

It could be argued that our findings are a small portion of a larger exploit chain. Assuming the memory
corruption described above is viable, to successfully exploit it would likely necessitate prerequisite
knowledge derived from other components of the exploit chain: an ASLR defeat, or heap information
leak to specifically target the dictionary and mutate it into some form of primitive.

It is altogether possible that these crashes are the byproduct of an entirely separate vulnerability but
still related to Nickname Updates. This vulnerability might require the attacker to send frequent
messages to the device. An excessive number of messages, if sent too quickly to the intended target,
could trigger the specific race condition for the UAF. In this case, the crashes we have identified are
unintentionally triggered by the attacker. If we assume an actor was successful in compromising the
target device and had cleaned up known indicators of compromise and exploitation residue, then the
lingering `imagent` crash logs are possibly indicative of the actor targeting a similar (but distinct)
code path that may somehow cause corruption of the mutable dictionaries which handle Nickname
Updates. It is worth recalling the structure of a Nickname Update: it is a serialized composition of
images, avatars, etc., represented as a dictionary, and likely handles other objects, too. We are not

iVerify Inc. Page 37

Technical Analysis

currently positioned to say specifically what requirements must be in place in order to trigger these
crashes.

As part of our technical analysis, and in recognizing the significance of these crashes, we conducted
forensic investigations on these devices. Unfortunately, the time between notification and data
acquisition prevented us from gathering qualitative data that might comprehensively reveal artifacts
pointing to other components of an exploit chain; however, forensic examination of one device did
reveal suspicious behavior closely attributed to iMessage exploitation. On this device, we observed
indications that iMessage attachments, directories, and metadata were modified and no longer
contained legitimate attachments. The modification timestamps were temporally significant,
occurring within 20 seconds of the original `imagent` crash we analyzed. We identified similar
filesystem metadata modifications related to NicknameUpdate attachment directories that were
modified and altogether empty. While it’s possible this behavior was caused by the user deleting
messages in bulk, we have also observed this behavior associated with past exploitation of the
iMessage remote attack surface. The circumstances under which the attachments were deleted –
exactly 20 seconds after a highly anomalous crash, on two occasions, well outside of normal business
hours – make it difficult to rule out the possibility the behavior may be residue from clean-up behavior
after a malicious implant successfully received execution on the device.

More data is needed to comprehensively describe the threat at hand. There is, however, a body of
telemetry that cannot be ignored:

These crashes are exceedingly rare considering the scale of our telemetry;

The crashes were found only on devices associated with organizations with a heightened risk profile
and evidence of previous attacks by advanced actors;

This bug occurs in `imagent`, a core service that is expected to operate with higher standards of
integrity and security, and which has been been exploited in the past;

At least one device on which we observed these crashes also received an Apple Threat Notification
after the crash occurred; and

There is some evidence of potential clean-up activity from one of the devices we forensically
analyzed.

In conclusion, we have moderate confidence that this was an attempt to exploit this subset of
devices. We have moderate confidence that at least one device was successfully compromised. And
we were unable to verify whether Lockdown Mode impacts the functionality of NICKNAME in one way
or another.

iVerify Inc. Page 38

Technical Analysis

Scope & Incidence

All crash logs were generated by devices with iOS versions between 17.2.1 to 18.1.1, inclusive.

iVerify Inc. Page 39

Technical Analysis

References

�� https://iverify.io/blog/clipping-wings-our-analysis-of-a-pegasus-spyware-sample

�� https://googleprojectzero.blogspot.com/2025/03/blasting-past-webp.html

�� https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

�� https://citizenlab.ca/2023/04/nso-groups-pegasus-spyware-returns-in-2022/

�� https://securelist.com/operation-triangulation/109842/

�� https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/

�� https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-

catch-nso-groups-pegasus/

�� https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-appendix-

d/

�� https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-
captured-in-the-wild/

��� https://developer.apple.com/documentation/foundation/nsinvocation

��� https://developer.apple.com/documentation/foundation/nsxpcconnection

��� https://developer.apple.com/documentation/foundation/nscopying/1410311-copywithzone

��� https://developer.apple.com/documentation/xcode/sigbus

��� https://developer.apple.com/documentation/xcode/acquiring-crash-reports-and-diagnostic-
logs

��� https://libimobiledevice.org/

��� https://github.com/blacktop/ipsw

iVerify Inc. Page 40

Technical Analysis

https://iverify.io/blog/clipping-wings-our-analysis-of-a-pegasus-spyware-sample
https://googleprojectzero.blogspot.com/2025/03/blasting-past-webp.html
https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html
https://citizenlab.ca/2023/04/nso-groups-pegasus-spyware-returns-in-2022/
https://securelist.com/operation-triangulation/109842/
https://securelist.com/operation-triangulation-the-last-hardware-mystery/111669/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-how-to-catch-nso-groups-pegasus/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-appendix-d/
https://www.amnesty.org/en/latest/research/2021/07/forensic-methodology-report-appendix-d/
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://citizenlab.ca/2023/09/blastpass-nso-group-iphone-zero-click-zero-day-exploit-captured-in-the-wild/
https://developer.apple.com/documentation/foundation/nsinvocation
https://developer.apple.com/documentation/foundation/nsxpcconnection
https://developer.apple.com/documentation/foundation/nscopying/1410311-copywithzone
https://developer.apple.com/documentation/xcode/sigbus
https://developer.apple.com/documentation/xcode/acquiring-crash-reports-and-diagnostic-logs
https://developer.apple.com/documentation/xcode/acquiring-crash-reports-and-diagnostic-logs
https://libimobiledevice.org/
https://github.com/blacktop/ipsw

iVerify Inc. iVerify.io

